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VGP352 – Week 4

⇨ Agenda:
 Anisotropic reflection

 Ward BRDF
 Ashikhmin BRDF

 Metals
 The skin effect
 Lafortune BRDF

 Complex lighting model implementation walk-through
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Anisotropy Refresher

Anisotropy...is the property of being directionally depen-
dent, as opposed to isotropy, which means homogeneity 
in all directions. It can be defined as a difference in a 
physical property (absorbance, refractive index, density, 
etc.) for some material when measured along different 
axes. An example is the light coming through a polarizing 
lens.

⇨ We saw this last term with filter areas for texture 
sampling
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Anisotropic Reflection

⇨ What does anisotropy mean for lighting and 
reflections?

 Some materials reflect light differently depending on 
the orientation of the material w.r.t. the light and 
viewer
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Anisotropic Reflection

⇨ What causes anisotropic reflection?
 Think about the micro-facet theory of surfaces
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Anisotropic Reflection

⇨ What causes anisotropic reflection?
 Think about the micro-facet theory of surfaces
 The distribution of normals is random, but the 

distribution depends on the orientation
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Anisotropic Reflection

⇨ What additional information is needed to 
implement an anisotropic normal distribution 
function?

 Our current lighting models use H, derived from N, L, 
and V

 This gives no information for the relative orientation of 
the surface vs. the light and viewer
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Anisotropic Reflection

⇨ What additional information is needed to 
implement an anisotropic normal distribution 
function?

 Our current lighting models use H, derived from N, L, 
and V

 This gives no information for the relative orientation of 
the surface vs. the light and viewer

⇨ The surface tangent!
 If V' is the projection of V onto the plane containing T 

and B, arccos(V'⋅T) is the relative orientation angle
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Ward's Anisotropic Model

⇨ Map N, T, and B to the Z, X, and Y axes
 

V
 is the angle between the vector and the Z-axis

 We can get this from the usual dot-products

Z

Y

X 
v


v

v

 
V
 is the angle between the vector 

and the X-axis
 Project V into the X/Y plane by setting 

Z=0 and re-normalizing
 Take the dot-product with the tangent
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Ward's Anisotropic Model

 
x
 and 

y
 control the width of the highlight in the two 

principal directions
 

x
 = 

y
 the reflection is isotropic

 tan2 = (1 – cos2) / cos2

 sin2 = 1 – cos2
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Ward's Anisotropic Model

 Essentially an elliptical version of the Gaussian 
distribution

 1 / (4
x

y
) is a semi-magic normalization factor that 

“is accurate as long as  is not much greater than 0.2, 
when the surface becomes mostly diffuse.”
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Ward's Anisotropic Model

 Ward presents an approximation that is cheaper to 
computer, but Schlick found the direct vector 
implementation to be both exact and faster still:

 Note:  Because a squared dot-product of H appears in 
the numerator and denominator, we don't need to 
normalize H

f i ,o=
K d
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Ashikhmin Model

 Most of the notation is the same as on the previous 
slides

 This differs from the notation in Ashikhmin's paper

 n
x
 and n

y
 are Phong-like exponents that control the 

shape of the specular lobe
 Roughly analogous to 

x
 and 

y
 in Ward's model

 F() is the Fresnel term

f si ,o=
nx1n y1

8
N⋅H 

nX cos
2Hn y sin

2H

H⋅max N⋅i ,N⋅o
F ⋅H 
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Ashikhmin Model

 F(0) is the Fresnel term at an angle of 0˚
 The strange constant factor is “designed to ensure 

energy conservation.”

f d i ,o=
28K d
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E.M. Waves in Conductors

⇨ Electromagnetic waves in conductors cause free 
electrons in the material to oscilate

 The frequency of this oscillation is proportional to the 
frequency of the electromagnetic wave

 These oscillations create eddy currents inside the 
material

 These eddy currents force the primary current very 
near the surface

 The change in current density w.r.t. change of depth 
is known as the skin effect
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E.M. Waves in Conductors

⇨ Higher frequency waves cause the current to be 
limited to thinner and thinner skins on the 
material

 A 1GHz wave in copper is restricted to ~0.5mm
 A 60Hz wave in copper is restricted to ~10mm
 Note: I'm trading a lot of physics here for a lot of hand 

waving!
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E.M. Waves in Conductors

⇨ What does this have to do with lighting?!?
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E.M. Waves in Conductors

⇨ What does this have to do with lighting?!?
 Light is “just” an electromagnetic wave
 Visible light is ~400THz - ~700THz

 THz is tera-Hz or 1,000GHz

⇨ As a result, light cannot penetrate deeply into 
metals

 Most of the cause of diffuse reflection in dielectrics is 
caused light penetrating into the material

 Lacking this, metal doesn't have a traditional diffuse 
reflection component

 Cook & Torrance pointed this out as well
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Metals

⇨ Two main components to metallic reflection:
 A mostly pure specular component

 A la Phong or Blinn

 A directional diffuse component
 Diffuse in the sense that the reflected color is the color of the 

material

⇨ None of our current models have a directional 
diffuse component
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Lafortune BRDF

⇨ Remember Phong:

 R is the ideal reflection vector
 Calculation using vectors:

 Calculation using the Householder matrix:

K=K sV⋅Rs I s

R=2N⋅LN−L

R=LT 2NNT−I =LT M
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Lafortune BRDF

⇨ What if we could replace M with some other 
matrix?
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Lafortune BRDF

⇨ What if we could replace M with some other 
matrix?

 We could move the specular lobe!
 The new matrix must be symmetric (M = MT) or it will 

violate Helmoltz Reciprocity
 It turns out that almost all cases except very unusual 

types of anisotropy, M is also diagonal
 C

x
 = C

y
 is also typical

M=[
C x 0 0
0 C y 0
0 0 C z

]
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Lafortune BRDF

⇨ We can rearrange the math a bit:

⇨ What if we could fit measured data to a series of 
cosine lobes?

K=K s M R⋅V 
s
I s

K=K s C x Rx V xC y R y V xC z Rz V z 
s
I s

K=∑i
K s C x , i Rx V xC y , i R y V yC z , i Rz V z

si I s
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Lafortune BRDF

⇨ What does the data look like?
 For matte steel:

C
xy

C
z

s

Lobe 1, red -1.11954 1.01272 15.8708

Lobe 1, green -1.11845 1.01469 15.6489

Lobe 1, blue -1.11999 1.01942 15.4571

Lobe 2, red -1.05334 0.69541 111.267

Lobe 2, green -1.06409 0.662178 88.9222

Lobe 2, blue -1.08378 0.626672 65.2179

Lobe 3, red -1.01684 1.00132 180.181

Lobe 3, green -1.01635 1.00112 184.152

Lobe 3 blue -1.01529 1.00108 195.773
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Next week...

⇨ Fur and hair
 Two final BRDFs

 Grand unifying theory of anisotropic BRDFs
 BRDFs for hair

 Fins and shells

⇨ Quiz #2
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Legal Statement

This work represents the view of the authors and does not necessarily rep-
resent the view of Intel or the Art Institute of Portland.

OpenGL is a trademark of Silicon Graphics, Inc. in the United States, other 
countries, or both.

Khronos and OpenGL ES are trademarks of the Khronos Group.

Other company, product, and service names may be trademarks or service 
marks of others.
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